Skip to main content

Hello World in Assembly

Photo by Martin Sanchez on Unsplash
Assembly alert! I promised to talk more about the compiler, but before it, more assembly. It is for a good reason, though. I was surprised to see my professor doing the “hello world” in assembly! Not only on x86_64 but also in the ARMv8 – different source code. He coded just like C or C++, saved, compiled and run it. The output was exactly like any other language. Nobody knew, but he was doing the Lab 5! I wish I were recording it.

Our goal in this class was to compare the compiler output with the hand-crafted assembly. As expected, the compiler produced non-optimal executables even when we played with some fine-tuning options that I mentioned in the last post.

How to compile an assembly code? Here are the commands:

- Using GNU Assembler
> as -g -o test.o test.s
> ld -o test test.o

- Using NASM Assembler
> nasm -g -f elf64 -o test.o test.s
> ld -o test test.o

- Using GCC
> gcc -g -o test.o test.S

How to get the assembly code from an executable?
> objdump -d test

Using those tools, we played on both architectures, and the compiler didn’t get any closer than our hand-crafted script. However, I don’t believe that we should start using low-level languages for everything. There are drawbacks to doing so. The major one is the fact that assembly is hardware-oriented. This means that it needs to be rewritten on different platforms. Comparing it with C or C++, you just need to code once and compile it multiple times (one for each platform). So, unless it is a requirement, I would take it as a last resource to improve the performance.

If you want to know more about the used scripts and the assembly language, here are some resources:
https://wiki.cdot.senecacollege.ca/wiki/Assembler_Basics
https://wiki.cdot.senecacollege.ca/wiki/SPO600_64-bit_Assembler_Lab

See you!

Comments

Popular posts from this blog

Project Stage 2

Photo by  SpaceX  on  Unsplash Hey! Were you curious about the results of profiling AWK ? Me too! Quick recap, what is profiling, and how to do it? Profiling is a technique to map the time execution of each part of the application. We can add instrumentation to the executable, or use interruption sampling to generate that map. Here, I’ll use both. Click here for more details on profiling . For the instrumentation, we have to tell the compiler to add the tools needed to collect the execution data. So, I’ve changed the “makefile” file, CFLAGS variable with “-g -Og -pg” and ran the make command. Then, I just ran the awk the same way I did to benchmark it. Here is the command line: ./awk 'BEGIN {FS = "<|:|=";} {if ($8 == "DDD>") a ++;} END {print "count: " a;}' bmark-data.txt This awk version, instrumented, generates a file gmon.out, which contains all execution data. This is the raw material to create a profile report using gp

Assembly?

Photo by  Jonas Svidras  on  Unsplash Last week on my SPO course, I had my first experience writing Assembly code. I won’t lie; it was struggling. For me, Assembly is like the Latin of the codding languages and “carpe diem” wasn’t my first lesson. Hexadecimal, binary and a list of instructions is a must know to guarantee survival. Our instructor introduced us to the 6502 processor: it is an old school chip that was used in many home solutions such as PCs and video games. Internally, it has three general-purpose registers, three special-purpose registers, memory and input and output ports. Fortunately, there are emulators on the internet that helps us to focus on the development, hiding the electronic part from us. http://6502.cdot.systems/ Using the emulator, our first task was to copy, paste and execute a piece of code to change the colour of every pixel in the display matrix. That was easy! The result was a yellow screen. Then we were asked to introduce so

Two-digit Numeric Display

Photo by  Nick Hillier  on  Unsplash Hi! I'm continuing my blog about my SPO classes. After a brief introduction in Assembly, we are good to hit Lab3. Our instructor kindly let us choose one project out of five. And of course, we decided to go with the easiest! We had to do a two-digit numeric display where the numbers are incremented or decremented by pressing plus and minus key in the keyboard. Soon the challenges were reviled as we dive into how to code it. Should we treat every digit separated or together? How to print them into the display? After a moment of reflection, we decided to handle the digits independently to facilitate the printing display. Also, we had to add a bit-map representation of the numbers because the 6502 chip doesn’t know any font. In this post, I’ll show you the code with the logic to increment and decrement without displaying anything. You can monitor the address $13 and $14 to make sure that it is working. Let me expla