Skip to main content

Colour Selection

Photo by Scott Webb on Unsplash


Today I'll talk about Lab 4. We had to pick two tasks out of four and develop the solution using my least favour language: assembly. Our group chose the options 2 (data input form) and 4 (screen colour selector) thinking that would be the easiest ones. The other options were adding calculator and hexdump. This post will talk about the colour selector, and my next will be the input form.

The colour selector project was quite easy to do relatively. There are only 16 colours available (0 to F in hex). We have to list them in the text area and allow the selection using the cursor (up and down). Once the colour is selected, we have to paint the graph area.

The graph area we did before. Basically, we have to store the colour code for every pixel in the display using the memory location between $0200 and $05FF. In the last post, we deal with up and down keys to change the numeric display. However, we never dealt with character display before.

The character display works the same way as the graph. Its memory locations range from $F000 to $F7CF and have 25 lines of 80 characters (80x25). The complication here is the navigation between rows. It is not a matter of just increment the high bite – meaning more code and more working hours. Fortunately, we have ROM routines to help us to navigate, get and set the characters. Just like calling a function.

To know more about the ROM routines, access the 6502 simulator notes and take a look at "ROM Routines."

I tried to put as many comments in the code that I could. Also, that was my first time using the stack (instructions pha and pla) that saved my code! The stack is a handy area to save data when you need to free registers to do something and then restore that data.

I'm proud of myself finishing this code. I know that is room for improvement, but I can see my progress using assembly. See you in the next post.

Comments

Popular posts from this blog

Two-digit Numeric Display - Final

Photo by  Nick Hillier  on  Unsplash In this post, I’ll continue the two-digit numeric display. If you miss it, click here and check it out . To finish this project, we just need to show the numbers in the matrix-pixel (the black-box in the 6502 emulator ). To kickstart, our instructor gave us one example of how to display graphs, which was a lot helpful. The first thing that I’ve noticed was the bitmap table at the bottom. So, I mimic it and made ten tables like that to represent each number (zero to nine). So far, so good! Then I grabbed the logic to display one digit, and then my nightmares just started. How to place two graphs (one for each digit)? How to switch from one number to another? How to reuse code? Where is my coffee?! To emulate some if-elseif-else statements, I used jmp (jump). They are all over the place! However, the 6502 limits the jump range from -127 to 128. That means moving the code-blocks to satisfy all jumps limit. For e...

Project Stage 1

Photo by  SpaceX  on  Unsplash Hello! This is my SPO 600 blog, and this post will be long – sorry. The goal is to pick one project that is CPU intensive, written in C or C++, and experiment different compiler options and present the results. That’s why it will be long – lots of data to show. I choose the AWK project ( https://github.com/onetrueawk/awk ). It is a handy tool to process files. Parse, sort, and filter are some trivial operations that are CPU intensive. To make it harder, I created a huge XML file to parse it and count the tags. I've described the machines in my last post, if you miss it, here it is . I also created a script to run and collect the data. I planned to run each candidate 10 times, but a few attempts didn’t receive any data. So, I decided to nest the loop in a way that even if someone kills my process, the data could be used. Guess what? It happened! To produce the candidates, I just changed the CFLAGS inside the makefile and ran the...

Assembly?

Photo by  Jonas Svidras  on  Unsplash Last week on my SPO course, I had my first experience writing Assembly code. I won’t lie; it was struggling. For me, Assembly is like the Latin of the codding languages and “carpe diem” wasn’t my first lesson. Hexadecimal, binary and a list of instructions is a must know to guarantee survival. Our instructor introduced us to the 6502 processor: it is an old school chip that was used in many home solutions such as PCs and video games. Internally, it has three general-purpose registers, three special-purpose registers, memory and input and output ports. Fortunately, there are emulators on the internet that helps us to focus on the development, hiding the electronic part from us. http://6502.cdot.systems/ Using the emulator, our first task was to copy, paste and execute a piece of code to change the colour of every pixel in the display matrix. That was easy! The result was a yellow screen. Then we were asked t...