Skip to main content

Data Input Form

Photo by Marvin Meyer on Unsplash

Continuing the Lab 4, we are going to develop the option 2, data input form. The goal is to prompt the user to enter its name, address, city, province and postal code. Also, letting the user use up, down, left, and right arrows to navigate throughout the fields. After finishing the data input, a summary is presented at the end.

Using the ROM routines, wasn’t too hard to allow users to type data into the character display. Then, I decided to make the filed names with the same width, 14 characters, limiting the input to 40 characters. So, the user is not allowed to type in the first 14 and after 54 characters. When the user presses enter at the last field, the summary is shown. I could display the fixed message, but I couldn’t copy the inserted data. I’m still working on that, and I’ll update this post as soon I figure it out.

It is frustrating for me to spend days in basic problems that could be solved quickly using other languages. Assembly is not captivating me at all. Perhaps, this is a lesson that would make me a better developer. I believe in the SPO course and hope to use upper-level languages soon.

Comments

Popular posts from this blog

SIMD - Single Instruction Multiple Data

Photo by  Vladimir Patkachakov  on  Unsplash Hi! Today’s lecture, we learned SIMD - Single Instruction Multiple Data. This is a great tool to process data in a bulk fashion. So, instead of doing one by one, based on the variable size, we can do 16, 8, 4 or 2 at the time. This technique is called auto-vectorization resources, and it falls into the category of machine instruction optimization that I mentioned in my last post. If the machine is SIMD enabled, the compiler can use it when translating a sum loop, for example. If we are summing 8 bits numbers, using SIMD, it will be 16 times faster. However, the compiler can figure that it is not safe to use SIMD due to overlapping or non-aligned data. In fact, the compiler will not apply SIMD in most cases, so we need to get our hands dirty and inject some assembly. I’ll show you how to do it in a second. Here are the lanes of the 128-bit AArch64 Advanced SIMD: 16 x 8 bits 8 x 16 bits 4 x 32 bits 2 x 64 bits 1 x ...

Going Faster

Photo by  Anders Jildén  on  Unsplash Today’s topic is compiler optimizations. Besides translating our source code into machine binary executable, the compiler, based on optimization parameters, can also produce faster executables. Just by adding some parameters to the compiler, we can get a better performance or a smaller executable, for example. There are hundreds of those parameters which we can turn on or off using the prefix -f and -fno. However, instead of doing one by one, we can use the features mode using the -O param. It ranges from 0 (no optimization – the default) to 3 (the highest). Using those parameters has a cost —usually, the faster, the larger executable. How does the compiler make it faster if my code is perfect? I’m going to put some methods here, but if you want, here is more detail . Also, bear in mind that most of the optimizations are done in the intermediate representation of the program. So, the examples below are rewritten just to...

Colour Selection

Photo by Scott Webb  on  Unsplash Today I'll talk about Lab 4. We had to pick two tasks out of four and develop the solution using my least favour language: assembly. Our group chose the options 2 (data input form) and 4 (screen colour selector) thinking that would be the easiest ones. The other options were adding calculator and hexdump. This post will talk about the colour selector, and my next will be the input form. The colour selector project was quite easy to do relatively. There are only 16 colours available (0 to F in hex). We have to list them in the text area and allow the selection using the cursor (up and down). Once the colour is selected, we have to paint the graph area. The graph area we did before. Basically, we have to store the colour code for every pixel in the display using the memory location between $0200 and $05FF. In the last post, we deal with up and down keys to change the numeric display. However, we never dealt with character display bef...