Skip to main content

Two-digit Numeric Display

Photo by Nick Hillier on Unsplash


Hi! I'm continuing my blog about my SPO classes. After a brief introduction in Assembly, we are good to hit Lab3. Our instructor kindly let us choose one project out of five. And of course, we decided to go with the easiest!

We had to do a two-digit numeric display where the numbers are incremented or decremented by pressing plus and minus key in the keyboard. Soon the challenges were reviled as we dive into how to code it. Should we treat every digit separated or together? How to print them into the display?

After a moment of reflection, we decided to handle the digits independently to facilitate the printing display. Also, we had to add a bit-map representation of the numbers because the 6502 chip doesn’t know any font.

In this post, I’ll show you the code with the logic to increment and decrement without displaying anything. You can monitor the address $13 and $14 to make sure that it is working.

Let me explain how it works. When the program starts, it will set $13 and $14 to zero, and then it will fall into the infinite loop called “main.” This loop will know if one of the keys was pressed and then jump to the proper function. Let’s say that you hit the plus key. It will call the “incr_l” subroutine,  incrementing the low digit and checking if it is more than 9 (#$0A). If so, it will call the “incr_h” that will increment the high digit and set the low digit to zero. If the high digit gets more than 9, the counter resets to zero. The same logic is applied to decrementing, but instead, it limits at zero and reset it to 99.

In the next post, I’ll add the numeric display. See you.


Comments

Popular posts from this blog

Two-digit Numeric Display - Final

Photo by  Nick Hillier  on  Unsplash In this post, I’ll continue the two-digit numeric display. If you miss it, click here and check it out . To finish this project, we just need to show the numbers in the matrix-pixel (the black-box in the 6502 emulator ). To kickstart, our instructor gave us one example of how to display graphs, which was a lot helpful. The first thing that I’ve noticed was the bitmap table at the bottom. So, I mimic it and made ten tables like that to represent each number (zero to nine). So far, so good! Then I grabbed the logic to display one digit, and then my nightmares just started. How to place two graphs (one for each digit)? How to switch from one number to another? How to reuse code? Where is my coffee?! To emulate some if-elseif-else statements, I used jmp (jump). They are all over the place! However, the 6502 limits the jump range from -127 to 128. That means moving the code-blocks to satisfy all jumps limit. For e...

Project Stage 1

Photo by  SpaceX  on  Unsplash Hello! This is my SPO 600 blog, and this post will be long – sorry. The goal is to pick one project that is CPU intensive, written in C or C++, and experiment different compiler options and present the results. That’s why it will be long – lots of data to show. I choose the AWK project ( https://github.com/onetrueawk/awk ). It is a handy tool to process files. Parse, sort, and filter are some trivial operations that are CPU intensive. To make it harder, I created a huge XML file to parse it and count the tags. I've described the machines in my last post, if you miss it, here it is . I also created a script to run and collect the data. I planned to run each candidate 10 times, but a few attempts didn’t receive any data. So, I decided to nest the loop in a way that even if someone kills my process, the data could be used. Guess what? It happened! To produce the candidates, I just changed the CFLAGS inside the makefile and ran the...

Assembly?

Photo by  Jonas Svidras  on  Unsplash Last week on my SPO course, I had my first experience writing Assembly code. I won’t lie; it was struggling. For me, Assembly is like the Latin of the codding languages and “carpe diem” wasn’t my first lesson. Hexadecimal, binary and a list of instructions is a must know to guarantee survival. Our instructor introduced us to the 6502 processor: it is an old school chip that was used in many home solutions such as PCs and video games. Internally, it has three general-purpose registers, three special-purpose registers, memory and input and output ports. Fortunately, there are emulators on the internet that helps us to focus on the development, hiding the electronic part from us. http://6502.cdot.systems/ Using the emulator, our first task was to copy, paste and execute a piece of code to change the colour of every pixel in the display matrix. That was easy! The result was a yellow screen. Then we were asked t...